Publications


Experiment

2022

Ganapathy, Dhruva; Xu, Victoria; Jia, Wenxuan; et al., Probing squeezing for gravitational-wave detectors with an audio-band field. Phys.Rev.D, 105 (12): Art. No. 122005 (2022).
Srivastava, Varun; Davis, Derek; Kuns, Kevin; et al., Science-driven Tunable Design of Cosmic Explorer Detectors. Astrophys.J., 931 (1): Art. No. 22 (2022).

2021

McClelland, David; Lueck, Harald; Adhikari, Rana; et al., 3G R&D: R&D for the Next Generation of Ground-based Gravitational-wave Detectors. arXiv:2111.06991 [gr-qc] (2021).
Kalogera, Vicky; Sathyaprakash, B.S.; Bailes, Matthew; et al., The Next Generation Global Gravitational Wave Observatory: The Science Book. arXiv:2111.06990 [gr-qc] (2021).
Evans, Matthew; Adhikari, Rana X.; Afle, Chaitanya; et al., A Horizon Study for Cosmic Explorer: Science, Observatories, and Community. arXiv:2109.09882 [astro-ph.IM, astro-ph.HE, gr-qc] (2021).
Jia, Wenxuan; Yamamoto, Hiroaki; Kuns, Kevin; et al., Point Absorber Limits to Future Gravitational-Wave Detectors. Phys.Rev.Lett., 127 (24): Art. No. 241102 (2021).
McCuller, L.; Dwyer, S.E.; Green, A.C.; et al., LIGO’s quantum response to squeezed states. Phys. Rev. D 104, 062006 (2021).
Bailes, M.; Berger, B.K.; Brady, P.R.; et al., Gravitational-wave physics and astronomy in the 2020s and 2030s. Nature Rev.Phys., 3 (5), 344–366 (2021).
Whittle, Chris; Hall, Evan D.; Dwyer, Sheila; et al., Approaching the motional ground state of a 10-kg object. Science 372, 1333 (2021).
Nguyen, Philippe; Schofield, Robert M.S.; Effler, Anamaria; et al., Environmental noise in advanced LIGO detectors. Class.Quant.Grav., 38 (14): Art. No. 145001 (2021).
Brooks, A.F.; Vajente, G.; Yamamoto, H.; et al., Point absorbers in Advanced LIGO. Appl.Opt., 60 (13): Art. No. 4047 (2021).
Amato, A.; Cagnoli, G.; Granata, M.; et al., Optical and mechanical properties of ion-beam-sputtered Nb$_2$O$_5$ and TiO$_2$-Nb$_2$O$_5$ thin films for gravitational-wave interferometers. Phys. Rev. D 103, 072001 (2021).

2020

Hall, Evan D.; Kuns, Kevin; Smith, Joshua R.; et al., Gravitational-wave physics with Cosmic Explorer: Limits to low-frequency sensitivity. Phys. Rev. D 103, 122004 (2020).
Ganapathy, Dhruva; McCuller, Lee; Graef Rollins, Jameson; et al., Tuning Advanced LIGO to kilohertz signals from neutron-star collisions. Phys. Rev. D 103, 022002 (2020).
Fernández-Galiana, Álvaro; McCuller, Lee; Kissel, Jeff; et al., Advanced LIGO squeezer platform for backscattered light and optical loss reduction. Class.Quant.Grav., 37 (21): Art. No. 215015 (2020).
Kijbunchoo, N.; McRae, T.; Sigg, D.; et al., Low phase noise squeezed vacuum for future generation gravitational wave detectors. Class.Quant.Grav., 37 (18): Art. No. 185014 (2020).
Whittle, Chris; Komori, Kentaro; Ganapathy, Dhruva; et al., Optimal detuning for quantum filter cavities. Phys. Rev. D 102, 102002 (2020).
Buikema, Aaron; Cahillane, Craig; Mansell, Georgia L.; et al., Sensitivity and performance of the Advanced LIGO detectors in the third observing run. Phys. Rev. D 102, 062003 (2020).
Soni, S.; Austin, C; Effler, Anamaria; et al., Reducing scattered light in LIGO's third observing run. Class.Quant.Grav., 38 (2): Art. No. 025016 (2020).
McCuller, L.; Whittle, C.; Ganapathy, D.; et al., Frequency-Dependent Squeezing for Advanced LIGO. Phys.Rev.Lett., 124 (17): Art. No. 171102 (2020).
Yu, Haocun; McCuller, L.; Tse, M.; et al., Quantum correlations between light and the kilogram-mass mirrors of LIGO. Nature, 583 (7814), 43–47 (2020).
Adhikari, R.X.; Arai, K.; Brooks, A.F.; et al., A cryogenic silicon interferometer for gravitational-wave detection. Class.Quant.Grav., 37 (16): Art. No. 165003 (2020).

2019

Tse, M.; Yu, Haocun; Kijbunchoo, N.; et al., Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy. Phys.Rev.Lett., 123 (23): Art. No. 231107 (2019).
Biscans, S.; Gras, S.; Blair, C.D.; et al., Suppressing parametric instabilities in LIGO using low-noise acoustic mode dampers. Phys.Rev.D, 100 (12): Art. No. 122003 (2019).
Reitze, David; Adhikari, Rana X; Ballmer, Stefan; et al., Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO. 2019 BAAS 51(7) 035 (2019).
Cripe, Jonathan; Aggarwal, Nancy; Lanza, Robert; et al., Measurement of quantum back action in the audio band at room temperature. Nature, 568 (7752), 364–367 (2019).
Hall, Evan D.; Evans, Matthew, Metrics for next-generation gravitational-wave detectors. CQG 36 225002 (2019).
Fernández-Galiana, Álvaro; McCuller, Lee; Kissel, Jeff; et al., A compact actively damped vibration isolation platform for optical experiments in ultra-high vacuum. arXiv:1901.09666 [physics.ins-det, astro-ph.IM, physics.optics] (2019).

2018

Liu, Hongwan; Elwood, Brodi D.; Evans, Matthew; et al., Searching for Axion Dark Matter with Birefringent Cavities. Phys. Rev. D 100, 023548 (2018).
Pankow, Chris; Chatziioannou, Katerina; Chase, Eve A.; et al., Mitigation of the instrumental noise transient in gravitational-wave data surrounding GW170817. Phys. Rev. D 98, 084016 (2018).
Miao, Haixing; Smith, Nicolas D.; Evans, Matthew, Quantum limit for laser interferometric gravitational wave detectors from optical dissipation. Phys. Rev. X 9, 011053 (2018).
Driggers, J.C.; Vitale, S.; Lundgren, A.P.; et al., Improving astrophysical parameter estimation via offline noise subtraction for Advanced LIGO. Phys. Rev. D 99, 042001 (2018).
Gras, S.; Evans, M., Direct Measurement of Coating Thermal Noise in Optical Resonators. Phys. Rev. D 98, 122001 (2018).
Covas, P.B.; Meyers, Patrick M.; Neunzert, Ansel; et al., Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO. Phys.Rev.D, 97 (8): Art. No. 082002 (2018).

2017

Yu, Hang; Martynov, Denis; Vitale, Salvatore; et al., Prospects for detecting gravitational waves at 5 Hz with ground-based detectors. Phys.Rev.Lett., 120 (14): Art. No. 141102 (2017).
Chen, Hsin-Yu; Holz, Daniel E.; Miller, John; et al., Distance measures in gravitational-wave astrophysics and cosmology. Class.Quant.Grav., 38 (5): Art. No. 055010 (2017).
Essick, Reed; Vitale, Salvatore; Evans, Matthew, Frequency-dependent responses in third generation gravitational-wave detectors. Phys.Rev.D, 96 (8): Art. No. 084004 (2017).
Biscans, S.; Warner, J.; Mittleman, R.; et al., Control strategy to limit duty cycle impact of earthquakes on the LIGO gravitational-wave detectors. Class.Quant.Grav., 35 (5): Art. No. 055004 (2017).
Robertson, N.A.; Fritschel, P.; Shapiro, B.; et al., Design of a tuned mass damper for high quality factor suspension modes in Advanced LIGO. Rev.Sci.Instrum., 88 (3): Art. No. 035117 (2017).
Blanton, Michael R.; Bershady, Matthew A.; Abolfathi, Bela; et al., Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies and the Distant Universe. Astron.J., 154 (1): Art. No. 28 (2017).
Walker, M.; Abbott, T.D.; Aston, Stuart M.; et al., Effects of transients in LIGO suspensions on searches for gravitational waves. Rev.Sci.Instrum., 88 (12): Art. No. 124501 (2017).
Martynov, Denis V.; Frolov, Valery V.; Kandhasamy, Shivaraj; et al., Quantum correlation measurements in interferometric gravitational wave detectors. Phys.Rev.A, 95 (4): Art. No. 043831 (2017).

2016

Ma, Yiqiu; Miao, Haixing; Pang, Belinda Heyun; et al., Proposal for Gravitational-Wave Detection Beyond the Standard Quantum Limit via EPR Entanglement. Nature Phys., 13: Art. No. 776 (2016).
Blair, Carl; Gras, Slawek; Abbott, Richard; et al., First Demonstration of Electrostatic Damping of Parametric Instability at Advanced LIGO. Phys.Rev.Lett., 118 (15): Art. No. 151102 (2016).
Regimbau, T.; Evans, M.; Christensen, N.; et al., Digging deeper: Observing primordial gravitational waves below the binary black hole produced stochastic background. Phys.Rev.Lett., 118 (15): Art. No. 151105 (2016).
Vitale, Salvatore; Evans, Matthew, Parameter estimation for binary black holes with networks of third generation gravitational-wave detectors. Phys.Rev.D, 95 (6): Art. No. 064052 (2016).
Abbott, Benjamin P.; Abbott, Rich; Abbott, Thomas D.; et al., Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy. Phys.Rev.D, 93 (11): Art. No. 112004 (2016).
Matichard, F.; Evans, M.; Mittleman, R.; et al., Modeling and Experiment of the Suspended Seismometer Concept for Attenuating the Contribution of Tilt Motion in Horizontal Measurements. Rev.Sci.Instrum., 87 (6): Art. No. 065002 (2016).

2015

Matichard, F.; Lantz, B.; Mittleman, R.; et al., Seismic isolation of Advanced LIGO: Review of strategy, instrumentation and performance. Class.Quant.Grav., 32 (18): Art. No. 185003 (2015).
Gras, Slawek; Fritschel, Peter; Barsotti, Lisa; et al., Resonant Dampers for Parametric Instabilities in Gravitational Wave Detectors. Phys.Rev.D, 92 (8): Art. No. 082001 (2015).
Evans, Matthew; Gras, Slawek; Fritschel, Peter; et al., Observation of Parametric Instability in Advanced LIGO. Phys.Rev.Lett., 114 (16): Art. No. 161102 (2015).

2014

Staley, A.; Martynov, D.; Abbott, R.; et al., Achieving resonance in the Advanced LIGO gravitational-wave interferometer. Class.Quant.Grav., 31 (24): Art. No. 245010 (2014).
Dwyer, Sheila; Sigg, Daniel; Ballmer, Stefan W.; et al., Gravitational wave detector with cosmological reach. Phys.Rev.D, 91 (8): Art. No. 082001 (2014).

2013

Isogai, T.; Miller, J.; Kwee, P.; et al., Loss in long-storage-time optical cavities. Opt.Express, 21, 30114–30125 (2013).
Harms, Jan; Slagmolen, Bram J.J.; Adhikari, Rana X.; et al., Low-Frequency Terrestrial Gravitational-Wave Detectors. Phys.Rev.D, 88 (12): Art. No. 122003 (2013).

2012

Cumming, A.V.; Bell, A.S.; Barsotti, L.; et al., Design and development of the advanced LIGO monolithic fused silica suspension. Class.Quant.Grav., 29: Art. No. 035003 (2012).

2011

Driggers, Jennifer C.; Evans, Matthew; Pepper, Keenan; et al., Active noise cancellation in a suspended interferometer. Rev.Sci.Instrum., 83: Art. No. 024501 (2011).
Fricke, Tobin T.; Smith-Lefebvre, Nicolas D.; Abbott, Richard; et al., DC readout experiment in Enhanced LIGO. Class.Quant.Grav., 29: Art. No. 065005 (2011).
Dolesi, R.; Hueller, M.; Nicolodi, D.; et al., Brownian force noise from molecular collisions and the sensitivity of advanced gravitational wave observatories. Phys.Rev.D, 84: Art. No. 063007 (2011).
Miller, John; Evans, Matthew; Barsotti, Lisa; et al., Damping parametric instabilities in future gravitational wave detectors by means of electrostatic actuators. Phys.Lett.A, 375, 788–794 (2011).

2010

Mavalvala, Nergis; McClelland, David E.; Mueller, Guido; et al., Lasers and optics: Looking towards third generation gravitational wave detectors. Gen.Rel.Grav., 43, 569–592 (2010).
Barsotti, L.; Evans, M.; Fritschel, P., Alignment sensing and control in advanced LIGO. Class.Quant.Grav., 27: Art. No. 084026 (2010).

Astrophysics

2022

Ng, Ken K.Y.; Goncharov, Boris; Chen, Shiqi; et al., Measuring properties of primordial black hole mergers at cosmological distances: effect of higher order modes in gravitational waves. arXiv:2210.03132 [astro-ph.CO, astro-ph.HE, gr-qc] (2022).
Vitale, Salvatore; Biscoveanu, Sylvia; Talbot, Colm, Spin it as you like: the (lack of a) measurement of the spin tilt distribution with LIGO-Virgo-KAGRA binary black holes. arXiv:2209.06978 [astro-ph.HE, gr-qc] (2022).
Biscoveanu, Sylvia; Landry, Philippe; Vitale, Salvatore, Population properties and multimessenger prospects of neutron star-black hole mergers following GWTC-3. arXiv:2207.01568 [astro-ph.HE] (2022).
Ng, Ken K.Y.; Franciolini, Gabriele; Berti, Emanuele; et al., Constraining High-redshift Stellar-mass Primordial Black Holes with Next-generation Ground-based Gravitational-wave Detectors. Astrophys.J.Lett., 933 (2): Art. No. L41 (2022).
Huang, Yiwen; Chen, Hsin-Yu; Haster, Carl-Johan; et al., Impact of calibration uncertainties on Hubble constant measurements from gravitational-wave sources. arXiv:2204.03614 [gr-qc, astro-ph.HE] (2022).
Varma, Vijay; Biscoveanu, Sylvia; Islam, Tousif; et al., Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys.Rev.Lett., 128 (19): Art. No. 191102 (2022).

2021

Kalogera, Vicky; Sathyaprakash, B.S.; Bailes, Matthew; et al., The Next Generation Global Gravitational Wave Observatory: The Science Book. arXiv:2111.06990 [gr-qc] (2021).
Frostig, Danielle; Biscoveanu, Sylvia; Mo, Geoffrey; et al., An Infrared Search for Kilonovae with the WINTER Telescope. I. Binary Neutron Star Mergers. Astrophys.J., 926 (2): Art. No. 152 (2021).
Evans, Matthew; Adhikari, Rana X.; Afle, Chaitanya; et al., A Horizon Study for Cosmic Explorer: Science, Observatories, and Community. arXiv:2109.09882 [astro-ph.IM, astro-ph.HE, gr-qc] (2021).
Gunny, Alec; Rankin, Dylan; Krupa, Jeffrey; et al., Hardware-accelerated Inference for Real-Time Gravitational-Wave Astronomy. Nature Astron., 6 (5), 529–536 (2021).
Ng, Ken K.Y.; Chen, Shiqi; Goncharov, Boris; et al., On the Single-event-based Identification of Primordial Black Hole Mergers at Cosmological Distances. Astrophys.J.Lett., 931 (1): Art. No. L12 (2021).
Franciolini, Gabriele; Baibhav, Vishal; De Luca, Valerio; et al., Searching for a subpopulation of primordial black holes in LIGO-Virgo gravitational-wave data. Phys.Rev.D, 105 (8): Art. No. 083526 (2021).
Bailes, M.; Berger, B.K.; Brady, P.R.; et al., Gravitational-wave physics and astronomy in the 2020s and 2030s. Nature Rev.Phys., 3 (5), 344–366 (2021).
Smith, Rory; Borhanian, Ssohrab; Sathyaprakash, Bangalore; et al., Bayesian Inference for Gravitational Waves from Binary Neutron Star Mergers in Third Generation Observatories. Phys. Rev. Lett. 127, 081102 (2021).
Magee, Ryan; Chatterjee, Deep; Singer, Leo P.; et al., First demonstration of early warning gravitational wave alerts. Astrophys.J.Lett., 910 (2): Art. No. L21 (2021).

2020

Ng, Ken K.Y.; Vitale, Salvatore; Farr, Will M.; et al., Probing multiple populations of compact binaries with third-generation gravitational-wave detectors. Astrophys. J. Lett. 913 (2021) L5 (2020).
Essick, Reed; Mo, Geoffrey; Katsavounidis, Erik, A Coincidence Null Test for Poisson-Distributed Events. Phys. Rev. D 103, 042003 (2020).
Ng, Ken K.Y.; Vitale, Salvatore; Hannuksela, Otto A.; et al., Constraints on Ultralight Scalar Bosons within Black Hole Spin Measurements from the LIGO-Virgo GWTC-2. Phys. Rev. Lett. 126, 151102 (2020).
Vitale, Salvatore, The first 5 years of gravitational-wave astrophysics. Science Vol. 372, Issue 6546, eabc7397 (2020).
Al Kharusi, S.; BenZvi, S.Y.; Bobowski, J.S.; et al., SNEWS 2.0: a next-generation supernova early warning system for multi-messenger astronomy. New J.Phys., 23 (3): Art. No. 031201 (2020).
Godwin, Patrick; Essick, Reed; Hanna, Chad; et al., Incorporation of Statistical Data Quality Information into the GstLAL Search Analysis. arXiv:2010.15282 [gr-qc, astro-ph.IM] (2020).
Vitale, Salvatore; Haster, Carl-Johan; Sun, Ling; et al., Physical approach to the marginalization of LIGO calibration uncertainties. Phys. Rev. D 103, 063016 (2020).
Ng, Ken K.Y.; Isi, Maximiliano; Haster, Carl-Johan; et al., Multiband gravitational-wave searches for ultralight bosons. Phys. Rev. D 102, 083020 (2020).
Zevin, Michael; Berry, Christopher P.L.; Coughlin, Scott; et al., You Can’t Always Get What You Want: The Impact of Prior Assumptions on Interpreting GW190412. The Astrophysical Journal Letters 899, L17 (2020).
Essick, Reed; Godwin, Patrick; Hanna, Chad; et al., iDQ: Statistical Inference of Non-Gaussian Noise with Auxiliary Degrees of Freedom in Gravitational-Wave Detectors. arXiv:2005.12761 [astro-ph.IM, gr-qc] (2020).
Huang, Yiwen; Haster, Carl-Johan; Vitale, Salvatore; et al., Statistical and systematic uncertainties in extracting the source properties of neutron star - black hole binaries with gravitational waves. Phys. Rev. D 103, 083001 (2020).
Ormiston, Rich; Nguyen, Tri; Coughlin, Michael; et al., Noise Reduction in Gravitational-wave Data via Deep Learning. Phys. Rev. Research 2, 033066 (2020).
Huang, Yiwen; Haster, Carl-Johan; Vitale, Salvatore; et al., Source properties of the lowest signal-to-noise-ratio binary black hole detections. Phys.Rev.D, 102 (10): Art. No. 103024 (2020).

2019

Huerta, E.A.; Allen, Gabrielle; Andreoni, Igor; et al., Enabling real-time multi-messenger astrophysics discoveries with deep learning. Nature Reviews Physics volume 1, pages 600-608 (2019).
Vajente, Gabriele; Huang, Yiwen; Isi, Maximiliano; et al., Machine-learning nonstationary noise out of gravitational-wave detectors. Phys. Rev. D 101, 042003 (2019).
Biscoveanu, Sylvia; Thrane, Eric; Vitale, Salvatore, Constraining short gamma-ray burst jet properties with gravitational waves and gamma rays. ApJ 893 38 (2019).
Ng, Ken K.Y.; Hannuksela, Otto A.; Vitale, Salvatore; et al., Searching for ultralight bosons within spin measurements of a population of binary black hole mergers. Phys. Rev. D 103, 063010 (2019).
Reitze, David; Adhikari, Rana X; Ballmer, Stefan; et al., Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO. 2019 BAAS 51(7) 035 (2019).
Safarzadeh, Mohammadtaher; Berger, Edo; Ng, Ken K.-Y.; et al., Measuring the delay time distribution of binary neutron stars. II. Using the redshift distribution from third-generation gravitational wave detectors network. Astrophys.J.Lett., 878 (1): Art. No. L13 (2019).
Sathyaprakash, B.S.; Buonanno, Alessandra; Lehner, Luis; et al., Extreme Gravity and Fundamental Physics. arXiv:1903.09221 [astro-ph.HE, gr-qc, hep-th, nucl-th] (2019).
Chatziioannou, Katerina; Cotesta, Roberto; Ghonge, Sudarshan; et al., On the properties of the massive binary black hole merger GW170729. Phys.Rev.D, 100 (10): Art. No. 104015 (2019).

2018

Huang, Yiwen; Middleton, Hannah; Ng, Ken K.-Y.; et al., Characterization of low-significance gravitational-wave compact binary sources. Phys.Rev.D, 98 (12): Art. No. 123021 (2018).
Pankow, Chris; Chatziioannou, Katerina; Chase, Eve A.; et al., Mitigation of the instrumental noise transient in gravitational-wave data surrounding GW170817. Phys. Rev. D 98, 084016 (2018).
Vitale, Salvatore; Farr, Will M.; Ng, Ken; et al., Measuring the star formation rate with gravitational waves from binary black holes. ApJL 886 L1 2019 (2018).
Fishbach, M.; Gray, R.; Magaña Hernandez, I.; et al., A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. Astrophys.J.Lett., 871 (1): Art. No. L13 (2018).
Driggers, J.C.; Vitale, S.; Lundgren, A.P.; et al., Improving astrophysical parameter estimation via offline noise subtraction for Advanced LIGO. Phys. Rev. D 99, 042001 (2018).
Ng, Ken K.Y.; Vitale, Salvatore; Zimmerman, Aaron; et al., Gravitational-wave astrophysics with effective-spin measurements: asymmetries and selection biases. Phys.Rev.D, 98 (8): Art. No. 083007 (2018).
Vitale, Salvatore; Whittle, Chris, Characterization of binary black holes by heterogeneous gravitational-wave networks. Phys. Rev. D 98, 024029 (2018).
Isi, Maximiliano; Smith, Rory; Vitale, Salvatore; et al., Enhancing confidence in the detection of gravitational waves from compact binaries using signal coherence. Phys. Rev. D 98, 042007 (2018).
Lynch, Ryan; Coughlin, Michael; Vitale, Salvatore; et al., Observational implications of lowering the LIGO-Virgo alert threshold. Astrophys.J.Lett., 861 (2): Art. No. L24 (2018).

2017

Meidam, Jeroen; Tsang, Ka Wa; Goldstein, Janna; et al., Parametrized tests of the strong-field dynamics of general relativity using gravitational wave signals from coalescing binary black holes: Fast likelihood calculations and sensitivity of the method. Phys.Rev.D, 97 (4): Art. No. 044033 (2017).
Yu, Hang; Martynov, Denis; Vitale, Salvatore; et al., Prospects for detecting gravitational waves at 5 Hz with ground-based detectors. Phys.Rev.Lett., 120 (14): Art. No. 141102 (2017).
Chen, Hsin-Yu; Holz, Daniel E.; Miller, John; et al., Distance measures in gravitational-wave astrophysics and cosmology. Class.Quant.Grav., 38 (5): Art. No. 055010 (2017).
Essick, Reed; Vitale, Salvatore; Evans, Matthew, Frequency-dependent responses in third generation gravitational-wave detectors. Phys.Rev.D, 96 (8): Art. No. 084004 (2017).
Amaro-Seoane, Pau; Audley, Heather; Babak, Stanislav; et al., Laser Interferometer Space Antenna. arXiv:1702.00786 [astro-ph.IM] (2017).

2016

Bécsy, Bence; Raffai, Peter; Cornish, Neil J.; et al., Parameter estimation for gravitational-wave bursts with the BayesWave pipeline. Astrophys.J., 839 (1): Art. No. 15 (2016).
Regimbau, T.; Evans, M.; Christensen, N.; et al., Digging deeper: Observing primordial gravitational waves below the binary black hole produced stochastic background. Phys.Rev.Lett., 118 (15): Art. No. 151105 (2016).
Vitale, Salvatore; Essick, Reed; Katsavounidis, Erik; et al., On similarity of binary black hole gravitational-wave skymaps: to observe or to wait?. MNRAS Letters 466 (1) L78-L82 (2016).
Vitale, Salvatore; Evans, Matthew, Parameter estimation for binary black holes with networks of third generation gravitational-wave detectors. Phys.Rev.D, 95 (6): Art. No. 064052 (2016).
Vitale, Salvatore, Three observational differences for binary black holes detections with second and third generation gravitational-wave detectors. Phys.Rev.D, 94 (12): Art. No. 121501 (2016).
Chen, Hsin-Yu; Essick, Reed; Vitale, Salvatore; et al., Observational Selection Effects with Ground-based Gravitational Wave Detectors. Astrophys.J., 835 (1): Art. No. 31 (2016).
Singer, Leo P.; Chen, Hsin-Yu; Holz, Daniel E.; et al., Supplement: Going the Distance: Mapping Host Galaxies of LIGO and Virgo Sources in Three Dimensions Using Local Cosmography and Targeted Follow-up. Astrophys.J.Suppl., 226 (1): Art. No. 10 (2016).
Vitale, Salvatore, Multiband Gravitational-Wave Astronomy: Parameter Estimation and Tests of General Relativity with Space- and Ground-Based Detectors. Phys.Rev.Lett., 117 (5): Art. No. 051102 (2016).
Singer, Leo P.; Chen, Hsin-Yu; Holz, Daniel E.; et al., Going the Distance: Mapping Host Galaxies of LIGO and Virgo Sources in Three Dimensions Using Local Cosmography and Targeted Follow-up. Astrophys.J.Lett., 829 (1): Art. No. L15 (2016).

2015

Lynch, Ryan; Vitale, Salvatore; Essick, Reed; et al., Information-theoretic approach to the gravitational-wave burst detection problem. Phys.Rev.D, 95 (10): Art. No. 104046 (2015).
Farr, Ben; Berry, Christopher P.L.; Farr, Will M.; et al., Parameter estimation on gravitational waves from neutron-star binaries with spinning components. Astrophys.J., 825 (2): Art. No. 116 (2015).
Agathos, Michalis; Meidam, Jeroen; Del Pozzo, Walter; et al., Constraining the neutron star equation of state with gravitational wave signals from coalescing binary neutron stars. Phys.Rev.D, 92 (2): Art. No. 023012 (2015).
Vitale, Salvatore; Lynch, Ryan; Sturani, Riccardo; et al., Use of gravitational waves to probe the formation channels of compact binaries. Class.Quant.Grav., 34 (3): Art. No. 03LT01 (2015).

2014

Berry, Christopher P.L.; Mandel, Ilya; Middleton, Hannah; et al., Parameter estimation for binary neutron-star coalescences with realistic noise during the Advanced LIGO era. Astrophys.J., 804 (2): Art. No. 114 (2014).
Veitch, J.; Raymond, V.; Farr, B.; et al., Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library. Phys.Rev.D, 91 (4): Art. No. 042003 (2014).
Essick, Reed; Vitale, Salvatore; Katsavounidis, Erik; et al., Localization of short duration gravitational-wave transients with the early advanced LIGO and Virgo detectors. Astrophys.J., 800 (2): Art. No. 81 (2014).
Singer, Leo P.; Price, Larry R.; Farr, Ben; et al., The First Two Years of Electromagnetic Follow-Up with Advanced LIGO and Virgo. Astrophys.J., 795 (2): Art. No. 105 (2014).
Vitale, Salvatore; Lynch, Ryan; Veitch, John; et al., Measuring the spin of black holes in binary systems using gravitational waves. Phys.Rev.Lett., 112 (25): Art. No. 251101 (2014).

2013

Sidery, T.; Aylott, B.; Christensen, N.; et al., Reconstructing the sky location of gravitational-wave detected compact binary systems: methodology for testing and comparison. Phys.Rev.D, 89 (8): Art. No. 084060 (2013).
Vitale, Salvatore; Del Pozzo, Walter, How serious can the stealth bias be in gravitational wave parameter estimation?. Phys.Rev.D, 89 (2): Art. No. 022002 (2013).
Agathos, Michalis; Del Pozzo, Walter; Li, Tjonnie G. F.; et al., TIGER: A data analysis pipeline for testing the strong-field dynamics of general relativity with gravitational wave signals from coalescing compact binaries. Phys.Rev.D, 89 (8): Art. No. 082001 (2013).
Essick, R.; Blackburn, L.; Katsavounidis, E., Optimizing Vetoes for Gravitational-Wave Transient Searches. Class.Quant.Grav., 30: Art. No. 155010 (2013).
Biswas, Rahul; Blackburn, Lindy; Cao, Junwei; et al., Application of machine learning algorithms to the study of noise artifacts in gravitational-wave data. Phys.Rev.D, 88 (6): Art. No. 062003 (2013).

2011

Dolesi, R.; Hueller, M.; Nicolodi, D.; et al., Brownian force noise from molecular collisions and the sensitivity of advanced gravitational wave observatories. Phys.Rev.D, 84: Art. No. 063007 (2011).

2010

Slutsky, J.; Blackburn, L.; Brown, D.A.; et al., Methods for Reducing False Alarms in Searches for Compact Binary Coalescences in LIGO Data. Class.Quant.Grav., 27: Art. No. 165023 (2010).